Book review: Fantastic numbers and where to find them

My PhD supervisor, Tony, has published a book. It's titled, Fantastic Numbers and Where to Find Them: A Cosmic Quest from Zero to Infinity. Full disclosure: I read one of the earliest drafts, which must have been about two years ago. It was quite enjoyable witnessing the book develop, hearing about new chapter plans, and …

Continue reading Book review: Fantastic numbers and where to find them

Generalised geometry #2: Generalised vector space and bilinear form

Generalised linear algebra In the first note we introduced one of the fundamental structures of generalised geometry, namely the generalised tangent bundle $latex {E \simeq TM \oplus T^{\star}M}&fg=000000$. In the extension of the standard tangent bundle $latex {TM}&fg=000000$ to $latex {TM \oplus T^{\star}M}&fg=000000$, we are simultaneously extending linear algebra to some notion of generalised linear …

Continue reading Generalised geometry #2: Generalised vector space and bilinear form

Cosmological constant, the duality symmetric string, and Atkin-Lehner symmetry

I was going through one of my notebooks and I came across a page with several comments on old papers by Arkady Tseytlin [1] and Gregory Moore [3], respectively. The notes must have been written last autumn at the start of the academic year, because it was around this time my supervisor and I were …

Continue reading Cosmological constant, the duality symmetric string, and Atkin-Lehner symmetry

Generalised geometry #1: Generalised tangent bundle

1. Introduction The motivation for generalised geometry as first formulated in [Hitc03], [Hitc05], and [Gual04] was to combine complex and symplectic manifolds into a single, common framework. In the sense of Hitchin's formulation, which follows Courant and Dorfman, generalised geometry has deep application in physics since emphasis is placed on adapting description of the physical …

Continue reading Generalised geometry #1: Generalised tangent bundle

Double Field Theory as the double copy of Yang-Mills

1. Introduction A few weeks ago I came across this paper [DHP] on Double Field Theory and the double copy of Yang-Mills. Its result is most curious. As a matter of introduction, recall how fundamental interactions in nature are governed by two kinds of theories: On the one hand, Einstein's theory of relativity. On the …

Continue reading Double Field Theory as the double copy of Yang-Mills

Notes on string theory #2: The relativistic point particle

1. Introduction In Chapter 1 of Polchinski's textbook, we start with a discussion on the relativistic point particle (pp. 9-11). String theory proposes that elementary particles are not pointlike, but rather 1-dimensional extended objects (i.e., strings). In fact, string theory (both the bosonic string in Volume 1 of Polchinski and the superstring that comprises much …

Continue reading Notes on string theory #2: The relativistic point particle

(n-1)-thoughts, n=4: Covid, Twitter news, and Douglas Adams

Covid days This is my first post in some weeks. Admittedly, I am one that can easily lose track of time as I get absorbed in one calculation or another. But that is not the reason for my lack of writing. It was my turn to experience Covid for the first time. For the first …

Continue reading (n-1)-thoughts, n=4: Covid, Twitter news, and Douglas Adams

Learning M-theory: Gauge theory of membranes, brane intersections, and the self-dual string

I've been learning a lot about M-theory. It's such a broad topic that, when people ask me 'what is M-theory?', I continue to struggle to know where to start. Right now, much of my learning is textbook and I have more questions than answers. I naturally take the approach of first wanting as broad and …

Continue reading Learning M-theory: Gauge theory of membranes, brane intersections, and the self-dual string